M.Sc./Int. M.Sc.-Ph.D. in Biological Sciences:

Program outcomes

- Obtain domain and technical knowledge in the subject related to Biological Sciences
- Learn Essential experimental skills
- Foster Research Aptitude required for biological research
- Learn effective scientific communication
- Gain advanced learning in Contemporary areas of Biological Sciences

Program specific outcomes

- Develop strong foundation in basic and applied concepts of Cell Biology, Molecular Biology, Recombinant DNA Technology, OMICS, Human Genetics and Immunology, Biostatistics, Analytical Techniques
- Integrate theoretical knowledge with hands on training and apply understandings of theoretical concepts through engagement in experimental work
- Strengthen analytical and technical skills.
- Develop core competence and problem solving approach
- Learn different bioinformatics, computational and Statistical tools
- Recognize, understand and apply basic ethical principles in biological research.
- Develop creative problem-solving skills and analytical thinking
- Ability to identify a problem and design laboratory experiments, perform Good Laboratory Practice, Ability to inspect data, interpret observations and apply statistical tools for their analysis.
- Learn and apply fundamental concepts of Intellectual Property Rights (IPR) in biological research
- Read, understand, interpret and critically evaluate scientific literature/information/data.
- Ability to communicate (both oral and written) scientific information clearly and in a well-organized approach.
- Ability to write research proposals for procuring intra or extramural research funding.
- Learn concepts of emerging areas in Biological sciences (Stem Cell biology, Oncology, Regenerative Medicine, Nanosciences, Bioinformatics) in conjunction with computational languages and tools (R, Python, Big data analysis).

Course outcomes

After taking the course the student would pursue career in

- Academia: Doctoral research in National/International Institutions
- Sales and R&D: Research fellow, Application/Technical expert in Pharmaceutical and Biotech companies
- Industry: Quality control, Clinical data management, Molecular diagnostics
- Scientific communication/Editing

Subject Wise Expected Outcome

Sl.	Semester	Course/module	Expected outcomes
No 1	I	Cell Biology	After completion of the course, students would be able
	-		to describe
			1) Cellular organization
			2) Cell cycle regulation
			3) Cell communication
			4) Techniques involved in cell biology
		Analytical	After completion of the course, students would be able
		Techniques in	to describe the principle and operation of biological
		Biology	instrumentation methods and techniques of
			1)Centrifugation and Electrophoresis b)
			2)Chromatography
			3)Spectroscopy
		Molecular Biology	After completion of the course, students would be able
			to describe:
			1)Genome organization
			2) Amino acids structures and properties
			(1) Transcription and Translation
		Desearch	The course will help to make students productive
		Methodology	member of their supervisor's lab without repetitive
		Wiethodology	training across lab groups
		Biostatistics	After completion of the course, students would be able
		Diostatistics	to:
			1)Understand types of data, and appropriate statistical
			tools for their analysis.
			2)Describe data using tables, graphs, or numbers
			3) Understand and use probability distributions
			4)Use statistics for generalizations and decision
			making
			5)Evaluate statistical conclusions based on
			experimental design
		Human	After completion of the course, students would be
		Evolutionary	able to:
		Genetics	1)Understand evolutionary patterns and how
			evolutionary relationships are estimated.
			2) Understand the principles of population genetics,
			including selection, genetic drift, mutation,
			2) Understand the machanisms of spaciation and
			diversification
			A) Understand the relevance of evolutionary biology
			to human society particularly human health
	T	Practical Paper 1	After completion of the course students would be able
			to:
			1) Perform cell culturing
			2) Handle cell lines

			3) Characterizing cell cultures
			4) Perform immunological assays that are routinely
			used in the field of immunology.
			5) Calibrate analytical instruments
			6) Operate and use UV spectrophotometer, HPLC,
			IR spectrophotometer
			7) Analyse NMR and MS data
		Practical Paper 2	After completion of the course, students would be able
		1	to:
			1)Perform transcription and mobility shift assay.
			2)Understand importance of performing literature
			review for writing a scientific research proposal.
			3) Make a poster or powerpoint presentation suitable
			for scientific conference
2	II	Recombinant DNA	Students will get basic understanding of gene cloning
		Technology	techniques, expression in various expression systems.
		Bioinformatics	After completion of the course, students would be able
			to describe
			1) bioinformatics databases, tools and soft wares
			2) Information access for DNA, protein and
			metabolites
			3) Sequence and structure analysis and predictions
		IPR and Patenting	After completion of the course, students would be
		C C	able to:
			1) Have fair understanding of types of Intellectual
			Property Rights
			2)Gain knowledge about the International
			arrangements for protection of various IPRs, Have
			insight into Patent system and Indian Patents Act
			and Rules
			3) Understand International Patent Application
			Procedure and Timelines
			4) Will have through understanding of patentability
			criteria, Fair skill of conducting prior art searches,
			analysing search results and form preliminary
			opinion on patentability of invention, Draft patent
			applications and claims.
			5) Have understanding of Patent examination process,
			timelines and preparing response to the examination
			report,
			6)Prepare representation/opposition
		OMICS	After completion of the course, students would be able
			to:
			1)Understand the field of 'Omics'.
			2) Apply methods and techniques used for gene,
			peptide, metabolite detection in genetic and
			biomedical research
			3)Describe and examine strategies used in the
			literature to find genes from expected biological
			and metabolic pathways

		1) Demonstrate and apply computer skills used in
		'Omics' research
		5) Describe how protein folding happens from both an
		energetic and a structural perspective
		6)Describe how protein structure can be determined
		using x-ray scattering or nuclear magnetic
		resonance (NMR) experiments
II	Recent Advances	After completion of the course, students would be able
	in Biology	to:
		1)Basic understanding or developmental biology
		2)Explain the ways to derive and characterize
		different stem cells.
		3)Understand the numerous application of stem cells
		in various fields.
		4) Describe the various types of biomaterials.
		5) Explain basic principles of tissue engineering.
		6) Describe use of stem cells for treatment of various
		disorders and diseases.
		7)Describe methods of synthesis, characterization
		and biological applications of nanoparticles.
	Research Seminar	After completion of the course, students would be able
		to:
		1)Find latest scientific literature published in peer
		reviewed journal
		2)Understand and critically discuss the findings in
		research articles
		3)Communicate scientific finding effectively
	Practical Paper 1	After completion of the course, students would be able
		to:
		1)Isolate genomic and plasmid vector
		2)PCR amplify and restriction digestion of vector
		and insertion of DNA
		3)Transform DH5 α host with plasmid vector
		containing DNA
		4)Induce expression of recombinant protein with
		IPTG in bacterial host
		5)Purify of protein using column chromatography
		and analysis by SDS PAGE
	Practical Paper 2	After completion of the course, students would be able
		1) Access bioinformatics databases
		2) Use different bioinformatics tools
		3) Analyse DNA/protein sequence and structure
		Maintain, subculture and characterize human
		pluripotent stem cells.
		(4) Differentiate numan pluripotent stem cells
		followed by characterization
		5) Assess the biocompatibility of biomaterial for
		growing numan pluripotent stem cells

r			-
			6)Differentiate human pluripotent stem cells in
			biocompatible scaffolds/membranes followed by
			characterization by qRT-PCR
			7)Synthesize metal oxide nanoparticles by various
			methods followed by their spectrophotometric
			analysis
			8)Synthesize Lipidic/Polymeric nanoparticles
3	III	Molecular	After completion of the course, students would be
		Oncology	able to:
			1)Acquire an historical perspective on the set of
			related diseases that are referred to as cancer.
			2)Gain an understanding of the sequence of events
			which can take a cell from normal to transformed.
			3)Be introduced to the molecular mechanisms
			responsible for cancer initiation and progression.
			4)4. Gain an appreciation for the evolution of cancer
			detection and treatment as well as the current state
		Immun ala av	of the art in these areas.
		minunology	After completion of the course, students would be able
			1) Describe structural and molecular mechanisms of
			inpate and adaptive immunity
			2) Know structural and molecular aspects of immune
			regulation including cell signaling and activation
			3) Know cellular and molecular bases of
			autoimmunity transplantation reactions tumours
			infectious and immunodeficiency disorders
			4)4) Know recent developments in vaccine
			development and techniques in clinical
			immunology
		Computational	After completion of the course, students would be able
		Tools	to:
			1)Do data analysis on MS Excel and have hands on
			knowledge of the same
			2) Analyze Data using Machine Learning algorithms
			in R
			3) Analyze biological data using R program
		Research Proposal	After completion of the course, students would be able
		Presentation	to:
			1)Understand various components of a research
			proposal
			2)Write a research proposal
	III	Practical Paper 1	After completion of the course, students would be able
			to:
			1) Understand and analyze genetic changes that may
			occur during cancer and extend the knowledge to
			various cancer types.
		T / 1 /	2)Perform basic immunology experiments
		Introduction to	After completion of the course, students would be able
		Pharmacology	to:

		(Elective)	1)Understand general principles of pharmacology
			2)Enlist steps involved in drug discovery and
			development
			3)Explain the different aspects of clinical
			pharmacology
			4)Describe types of toxins, their metabolism and
			toxicity testing
		Introduction to	By the end of this course the student should be able
		Python	to
		(Elective)	1)Code programs in python
			2)Use the acquired programming skill to utilize in
			biological research
		Molecular	By the end of this course the student should be able
		medicine	to Understand molecular causes of genetic and
		(Elective)	pathogenic diseases.
4	IV	Project	1)Obtain experimental work experience and by
			working in an academic or industrial set-up.
			2)Improve your employability prospects.